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Abstract   

The study examined dependence structure and estimates portfolio risk on data from some 

selected Nigerian stocks. Marginal model for the stock returns and a joint model for the 

dependence for the dependence were specified. EVT model was employed for the marginal 

distribution of each return series, and for the joint model, the family of copula such as 

Gaussian, Frank, Gumbel, Clayton, BB7, Student-t copula were used with difference 

dependence structure, Using LL, AIC, and BIC values, BB7 is found to be the best fitted copula. 

Copula was used to measure Portfolio risk and global minimum risk portfolio is selected based 

on efficient frontiers. In estimating VaR, precise specification and identification of the 

probability of an extreme movement in the value of an individual asset (or portfolio) is essential 

for risk assessment. The evidence has direct implications for investors and risk managers 

during extreme currency market movements. 
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1.1:  INTRODUCTION 

Previous studies have shown that measuring linear correlation can lead to misleading 

interpretations and dependency effects when it comes to financial variables. Existing studies 

have shown that the copula approach can be adopted as an alternative and effective way of 

analysing the dependence structure between financial assets because it provides the solution to 

the fat-tailed problems in multivariate cases arising from the possibility of large co-

dependencies or extreme movements. Focus on the application of copula-based forecasting 

models, studying tail dependence and how the choice of a risk model affects asset allocation. 

Analysis of the dependence structure of weekly returns of some selected Nigerian financial 

assets using a modelling approach. 

Data on financial returns have been shown to be non-normally distributed, compared to the 

classical assumption of a normal distribution. Extreme value theory (EVT) is adopted to show 

extreme risks through tail modelling, which is important for risk measurement. To accurately 
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describe the high dependency relationship between assets, the extreme value theorem is 

introduced to construct the marginal distribution. The effects of leverage and long tails have 

been clearly observed in some selected Nigerian financial statements. Assets in the portfolio 

include Dangote Cement, Nestle, Vitaform, Fidson and Guarantee Trust Holdings Company. 

Using some selected Nigerian stock markets, an analysis of the performance of various risk 

model portfolio strategies indicates that EVT forecast models, which use Gaussian ot Student 

COPULAS, are better at minimizing portfolio risk. Use COPULA functions to model the 

dependence of large market movements and test the validity of the results by implementing 

back testing techniques. The results show that the COPULA-based approach does not vary 

significantly across tests using information criteria, provides better estimates than common 

methods currently used, and captures VaR well based on differences in the number of 

exceptions generated during different testing periods. observation with the same confidence 

level. The results show that the COPULA-based approach does not vary significantly across 

tests using information criteria, provides better estimates than common methods currently used, 

and captures VaR well based on differences in the number of exceptions generated during 

different testing periods. observation with the same confidence level. The VaR model measures 

market risk by determining how much the value of a portfolio will decline over a given period 

with a given probability because of changes in market rates or prices. VaR is the standard for 

measuring market risk and has become a widely used tool in risk management by financial 

institutions and regulators over the last two decades (Nieto & Ruiz, 2016). There are many 

methods for estimating VaR (e.g. Holton (2003), Jurion (2007), Malls (2011)) and the most 

widely used method is the covariance method (developed by JP Morgan using its own risk 

metrics in 1993), historical simulation and Monte Carlo simulation. The variance-variance and 

historical simulation methods assume that asset returns are independently and normally 

distributed. This assumption contradicts the empirical evidence presented by Sheikh and Qiao 

(2010), which shows that in many cases, financial asset returns are neither independent nor 

normally distributed, but are in fact volatile and highly volatile, which leads to an 

underestimation or overestimation of VaR; This is because extremely large positive and 

negative asset returns are more common in practice than in normally distributed models. 

Extreme value theory (EVT) provides a set of methodological tools to address issues such as 

skewness, large tails and rare (extreme) events, and is used to calculate measures related to 

tails, which are about showing extreme risks. using backward models, which is important for 

risk management. It is necessary to introduce the extreme value theorem to construct the 

marginal distribution to accurately describe the extreme dependence relationship between 

assets. Modeling the dependence between returns has played an important role in portfolio 

optimization, credit risk and financial market analysis. One difficulty in estimating the value 

at risk (VaR) of a portfolio is modeling the comovement of returns, that is, the dependence 

structure. VaR has to do with the tail of the distribution. A copula is an indirect measure of risk 

that captures the dependency between extreme events, and the advantage of a copula is that it 

is used as a measure of the dependency structure and tail dependency. Initially, the dependence 

structure between random variables is completely described by a joint distribution function 

(linear correlation, as a criterion, captures part of this dependence structure. It has the 

disadvantage that linear correlation is not constant under nonlinear monotonic transformations 

of random variables. Linear correlation conflicts with an important property of copulas, that 

they are constant under monotonic transformations of random variables). The multivariate 

dependence structure between markets can be modeled using copulas that adapt well to 
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nonlinear dependencies and nonnormal distributions. Implicit Gaussian copulas are used in the 

literature, but it is important to consider copulas other than implicit Gaussian copulas due to 

the failure of the correlation approach to capture the dependence between extreme events, as 

shown by Longin and Solnick (2001), Bai et al. (2003) and Hartmann et al. (2004). Copulas 

provide financial risk managers, investors, and regulators with a powerful tool to model the 

dependency between different elements of a portfolio, which is better than the traditional 

correlation-based approach. 

2.1 Literature Review 

A multivariate model consists of two components: a univariate or marginal model that 

describes each variable, and a dependence structure among these marginal variables. Since the 

1960s, Mandelbrot (1963) and Fama (1965) have shown that univariate asset return 

distributions are not normally distributed, as evidenced by excessive kurtosis (or “fat tail”) and 

skewness above the normal distribution. I've been paying attention to what isn't there. 

Numerous empirical studies have investigated the interdependence between stock markets. For 

example, Longin and Solnik (2001) and Ang and Chen (2002) use linear correlation to show 

that the correlation between stock market returns in both international and domestic markets is 

not constant over time.  

Most of the early studies used linear correlation coefficients as a measure of reliance on stock 

markets and financial econometrics in general. It is now well known that linear correlation is a 

natural measure of dependence only for spherical and elliptical distributions, including 

multivariate normal distributions, but real-world distributions rarely belong to this class. None 

(Embrechts, McNeil, & Straumann, 2002). Linear correlation is invariant under strictly 

increasing linear transformations, which is a desirable property. However, linear correlation is 

not a measure of agreement because it is not invariant under nonlinear, strictly incremental 

transformations (Embrechts, Lindskog, & McNeil, 2003). 

Jondeau and Rockinger (2003) investigate the behavior of some stock market returns based on 

highly sloped distributions and show that linear correlation is not an ideal measure of 

dependence. Therefore, assuming multivariate normality or using linear correlation 

coefficients to measure stock market dependence can lead to inaccurate hedge selection, 

incorrect portfolio decisions, or underestimation of portfolio risk. may lead to. In addition to 

being non-normally distributed, stock returns depend more on the extremely negative low tail 

than on the extremely positive high tail. This is a phenomenon that cannot be captured by linear 

correlation (Longin and Solnik, 2001; Ang and Chen, 2002). Poon et al. (2004) reports an 

asymmetric dependence of asset returns, which represents a rejection of multivariate normality. 

As Patton (2006) showed using the copula function, with asymmetric dependence, returns are 

more correlated during market crashes than during market booms. Kendall's Tau and 

Spearman's Rho as copula measurements are the best substitutes for linear correlation 

coefficients (Embrechts et al., 2003). A desirable feature of Kendall's Tau and Spearman's Rho 

is that they are invariant to strictly increasing component-wise transformations. Another 

desirable feature is that for continuous random variables, all values in the interval [O;1] of 

Kendall's Tau or Spearman's Rho can be obtained by appropriate selection of the underlying 

copula; This is not the case for linear correlations.  McNeil, Frey, and Embrechts, (2005), and 

Embrechts et al. (2002) propose a copula-rank correlation to model the concept of dependency. 

McNeil et al. (2005) explain why copula has proven to be very versatile in risk management 
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due to several reasons. First, extreme dependencies between assets can be explained by 

copulas, regardless of whether the dependencies are assumed to be constant or change over 

time. Second, the copula approach allows the connection or “coupling” of multiple boundary 

models with different possible dependency specifications. Finally, tail dependencies, both 

symmetric and asymmetric dependencies, and positive and negative dependencies, can be 

easily captured by copulas. As a result, Copula has become a very popular method for modeling 

dependencies between assets and markets. A copula is a function that connects a multivariate 

distribution to its one-dimensional tail (Sklar, 1959). According to Nelsen (2006), the copula 

can be viewed from two perspectives. "From one perspective, a copula is a function that 

connects or combines a multivariate distribution function with her one-dimensional marginal 

distribution function." Alternatively, a copula is a multivariate distribution function whose one-

dimensional tail is uniform in the interval (0,1). 

Modelling dependencies based on available information leads to the study of conditional 

copulas. To model an unconditional or time-varying copula, you must specify a model for the 

unconditional or conditional marginal distribution of the standardized residuals. As pointed out 

by Patton (2006), directly modeling the dependence structure of variables using unconditional 

probabilities yields a model of the unconditional copula of returns. Therefore, in this article, 

we use Gaussian, Frank, Gumbel, Clayton, BB7, Student t copulas with differential dependence 

structure and use LL, AIC, and BIC to determine the optimal model. 

3.1  Methodology  

3.1.1 Extreme Value Theory (EVT)  

Let 𝑦𝑖 be the standardised residuals that are extracted from the GARCH models. The peak over 

threshold (POT) data selection approach used to fit the Generalised Pareto Distribution (GPD), 

and the block maxima (BM) data selection approach for fitting the Generalised Extreme Value 

Distribution (GEVD) are used to model the standardised residuals from the selected GARCH 

models. 

3.1.2   The peak over threshold (POT) 

This   method has become the method of choice in financial applications.  defining a 

sequence of values that exceed a high threshold 𝑢, according to the POT approach. The 

distribution of excess values is given by: 

 

                                  𝐹𝑢(𝑦) =
Pr(𝑋−𝑢≤𝑦,𝑋>𝑢)

Pr(𝑋>𝑢)
,0 ≤ 𝑦 ≤ 𝑥𝐹 − 𝑢 

where𝑦 = 𝑦 − 𝑢 is the excess over𝑢 and 𝑥𝐹  the right endpoint of 𝐹 

According to Pickands (1975) the limiting distribution of 𝐹𝑢can be approximated by a         

3.1.3 Generalized Parato Distribution (GPD) given by 

     

𝐺𝜉𝜑(𝑦) = {
1 − (1 +

𝜉(𝑦−𝑢

𝜑
)

−1

𝜉
 , ifξ ≠ 0

1 − 𝑒
−(𝑦−𝑢)

𝜑 ,ifξ = 0

                        (1) 

   where 𝑦 > 𝑢, 𝑦 − 𝑢 is the exceedance , and 0 ≤ 𝑦 ≤ −
𝜑

𝜉
, 𝜑 > 0,

𝐺𝜉𝜑(𝑦)𝑖𝑠𝑡ℎ𝑒𝐺𝑃𝐷𝑤𝑖𝑡ℎ𝜉 the shape parameter, and𝜑 the scale parameter and a threshold 

u. The value of 𝜉 shows how heavy the tail is, with a biggest positive value (𝜉) indicating a 

heavy tail.𝜉 < 0 indicating a bounded tail,𝜉 = 0indicates a light tail. 
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The density function is given as: 

  

𝐺𝜉𝜑(𝑦) = {

1

𝜑
(1 +

𝜉(𝑦−𝑢

𝜑
)
−1

 , ifξ ≠ 0

𝑒𝑥𝑝
−(𝑦−𝑢)

𝜑 ,ifξ = 0

                              (2) 

 

 

3.1.4.  The Generalised Extreme Value Distribution (GEVD) 

 

The GEVD is the limiting distribution of normalised block maxima of a sequence  of 

independent identically distributed random variables. The GEVD is given as follows: 

𝐺𝜉,𝜇,𝜑(𝑦) = {
exp{−(1 + 𝜉 (

𝑦−𝑢

𝜑
))}, ifξ ≠ 0

exp{−exp(−(
𝑦−𝑢

𝜑
),ifξ → 0

               (3) 

with ξ ≠ 0,𝜑 > 𝑜 and 1 + 𝜉 (
𝑦−𝑢

𝜑
) > 1 

 The distribution 𝐹 can be expressed as function of the conditional excess distribution over 

the threshold 𝑢 as follows: 

 

                                 𝐹(𝑥) = [1 − 𝐹(𝑢)]𝐹𝑢(𝑦) + 𝐹(𝑢). 

The function of 𝐹(𝑢) can be estimated non-parametrically by
𝑛−𝑘

𝑛
, where 𝑛 is the total 

number of observations, and k is the number of observations above the threshold 𝑢, using the 

method of historical simulation (HS). After replacing 𝐹𝑢(𝑦) by 𝐺𝜉𝜓(𝑦),we get the following 

estimate for 𝐹(𝑥):    𝐹(𝑥) = 1 −
𝑘

𝑛
[1 + 𝜉

𝑥−𝑢

𝜓
]
−
1

𝜉  

For 𝑋 > 𝑢,where 𝛏 and𝛙 can be estimated by the method of maximum likelihood.  The EVT 

approach described above focuses directly on the tail but does not acknowledge the fact that 

financial asset returns are non-iid. Most financial return series exhibit volatility clustering, fat-

tailed distributions, and leverage effect. While the fat tails might be modeled directly with EVT, 

the lack of iid returns is problematic. One approach to this problem is provided by McNeil and 

Frey (2000). Using a two-stage approach they estimate the conditional volatility using a 

GARCH model in stage one. The GARCH model serves to filter the return series such that 

GARCH residuals are closer to iid than the raw return series. Even so, GARCH residuals have 

been shown to exhibit fat tails. In stage two, EVT is applied to the GARCH residuals. As such, 

the GARCH-EVT combination accommodates both time-varying volatility and fat-tailed 

return distributions.  

3.2 Portfolio risk problem 

Let us consider the problem of measuring the risk of holding a portfolio consists of N assets 

with returns at 𝑇-th day, denoted as𝑥𝑛,𝑇, given the historical data 

 

                 {𝑥𝑛,𝑡|𝑡 = 1,2, … . , 𝑇 − 1}, for 𝑛 = 1,2, … . . 𝑁. 

 

 The portfolio return at 𝑡-th day, denoted as𝑥𝑡, is approximately equal to 
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                𝑥𝑡 = 𝜔1𝑥1,𝑡 + 𝜔2𝑥2,𝑡 +⋯+𝜔𝑁𝑥𝑁,𝑡 
 

Where𝜔𝑛 is the portfolio weighs of asset𝑛 and 
∑ 𝜔𝑛,𝑡

𝑁
𝑛=1 = 1, for   𝑡 = 1,2, … . . 𝑇, 

                 𝑛 = 1,2, … ,𝑁. 
 Morgan(1994) published a risk control method called Riskmetrics, which is mainly based on 

a parameter named Value at Risk(VaR). For a given time horizon 𝑇and confidence level𝑝, 

the VaR is defined as the loss in market value over the time horizon 𝑇 that is exceeded with 

probability 1 − 𝑝.   Precisely, VaR of a portfolio can be defined as follows. 

Definition. Let 𝐻𝑇(𝑥𝑇|𝔍) be the conditional distribution function of the returns of portfolio 

consists of𝑥1, 𝑥2, … , 𝑥𝑁 at time 𝑇 with conditional set 𝔍. 

𝔍 = {{{𝑥𝑛,𝑡|𝑛 = 1,2, … . , 𝑁}, 𝑡 = 1,2, … . , 𝑇 − 1}} 

 𝔍represents the past information from day 1 to day  𝑇 − 1. 
  Then the VaR of the portfolio at time 𝑇, with confidence level 𝑝, where𝑝 ∈ (0,1) is defined 

by  

                                      𝑉𝑎𝑅𝑇(𝑝) = 𝑖𝑛𝑓{𝑠 =:𝐻𝑇(𝑠|𝔍) ≥ 1 − 𝑝}.  

3.3 Copula 

A copula is a probability model that represent a multivariate uniform distribution which 

combines the marginal distributions to the joint distribution function𝐹. This can be done by 

specifying the marginal distribution function  𝐹 and the copula function𝐶 .  Sklar (1959) 

introduced the concept of copulas that has been recognized as a powerful tool for modelling 

dependence between variables. Applications based on copula theory centralize around the Sklar 

theorem which ensures the relation between a 𝑁-dimensional distribution and a corresponding 

copula. A copula function in𝑁 dimensional whose domain is [0,1]𝑁andwhoserange[0,1]  
with the following properties: (1) For every 𝑢 ∈ [0,1]𝑁 , 𝐶(𝑢) = 0if 0 if at least one coordinate 

of 𝑢 is 0 and if all  coordinates of 𝑢 are 1 except𝑢𝑛, then., 𝐶(𝑢) = 𝑢𝑛, 𝑛 = 1,2, …𝑁 (2) For 

every 𝑎, 𝑏 ∈ [0,1]𝑁 such  

that 𝑎 < 𝑏, 𝑉𝑐([𝑎, 𝑏] ≥ 0 

Sklar’s theorem: Let 𝐻 be a 𝑁 −dimensional distribution function with 1 dimensional 

margins 𝐹1, 𝐹2, … . . 𝐹𝑁 . Then there exists a 𝑁 −copulas 𝐶 such that for all𝑥in ℝ𝑁, 

                𝐻(𝑥1, 𝑥2, … . , 𝑥𝑁) = 𝐶(𝐹1(𝑥1), 𝐹2(𝑥2), … . , 𝐹𝑁(𝑥𝑁)).                         (4) 

𝑖𝑓𝐹1, 𝐹2, … , 𝐹𝑁𝑎𝑟𝑒𝑎𝑙𝑙𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠, 𝑡ℎ𝑒𝐶𝑖𝑠𝑢𝑛𝑖𝑞𝑢𝑒; 

          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒𝐶𝑖𝑠𝑢𝑛𝑖𝑞𝑢𝑒𝑙𝑦𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝑑𝑜𝑛𝑅𝑎𝑛𝐹1 × 𝑅𝑎𝑛𝐹2 × … .× 𝑅𝑎𝑛𝐹𝑁. 

Conversely, if 𝐶 is a 𝑁 −copula and 𝐹1, 𝐹2, … . . 𝐹𝑁are distribution functions, then the 

function 𝐻 is defined by 

𝐻(𝑥1, 𝑥2, … . , 𝑥𝑁) = 𝐶(𝐹1(𝑥1), 𝐹2(𝑥2), … . , 𝐹𝑁(𝑥𝑁); 𝜃)  
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is a 𝑁 − 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑤𝑖𝑡ℎ𝑚𝑎𝑟𝑔𝑖𝑛𝑠. Where 𝜃 is a parameter of the copula called 

the dependence parameter ,which measures dependence between the marginals.  

The Sklar’s theorem can be use to find copula when the margin and joint distribution are 

given. 

  Corollary.  Let 𝐻 be a 𝑁 −dimensional distribution function with 1 dimensional margins 

𝐹1, . . 𝐹𝑁 . Then there exists a 𝑁 −copulas 𝐶 such that for all𝑥in ℝ𝑁 and 𝐹1
(−1)

, … , 𝐹𝑁
(−1)

 be 

quasi-inverse of 𝐹1, . . 𝐹𝑁 ,respectively. Then, for any  𝑢𝑖𝑛[0,1]𝑁 

𝐶(𝑢1, 𝑢2, … , 𝑢𝑁) = 𝐻(𝐹1
(−1)(𝑢1)𝐹2

(−1)(𝑢2), , … , 𝐹𝑁
(−1)(𝑢𝑁))   

If 𝐶 is a copula and 𝐹1, . . 𝐹𝑁 are univariate distribution functions, then Equation (4) above is a 

joint distribution function with margin 𝐹1, . . 𝐹𝑁 (Tsay, 2013) 

By applying Sklar theorem and exploiting the relation between the distribution and the 

density function, the multivariate copula density can easily be derive 

 

                                                  𝑐(𝐹1(𝑥1), 𝐹2(𝑥2),… . , 𝐹𝑁(𝑥𝑁))  

associated with a copula function 

𝐶(𝐹1(𝑥1), 𝐹2(𝑥2), … . , 𝐹𝑁(𝑥𝑁)): 

The joint density function is obtained by differentiating once with respect to all arguments  

Equation(1) above and it is given the product of the marginals and copula density  

ℎ(𝑥1, 𝑥2, … . , 𝑥𝑁) =
𝜕𝑁[𝐶(𝐹1(𝑥1), 𝐹2(𝑥2),… . , 𝐹𝑁(𝑥𝑁))]

𝜕𝐹1(𝑥1), 𝜕𝐹2(𝑥2), … . , 𝜕𝐹𝑁(𝑥𝑁)
∏𝐹𝑛(𝑥𝑛)

𝑁

𝑛=1

 

                                                  =𝑐(𝐹1(𝑥1), 𝐹2(𝑥2), … . , 𝐹𝑁(𝑥𝑁))∏ 𝐹𝑛(𝑥𝑛)
𝑁
𝑛=1  

Defining  

                     𝑐(𝐹1(𝑥1), 𝐹2(𝑥2),… . , 𝐹𝑁(𝑥𝑁))=
𝑓(𝑥1,𝑥2,….,𝑥𝑁)

∏ 𝐹𝑛(𝑥𝑛)
𝑁
𝑛=1

 

Where 𝐹𝑛are the marginal densities that can different from each other (Tsay,2013;Cherubini 

et al 2004) which is related to the density function𝐹 for continuous random variables denoted 

by𝑓 by copula representation. 

𝑓(𝑥1, 𝑥2, … . , 𝑥𝑁) = 𝑐(𝐹1(𝑥1), 𝐹2(𝑥2), … . , 𝐹𝑁(𝑥𝑁))∏𝐹𝑛(𝑥𝑛)

𝑁

𝑛=1

 

This allows to define the copula as a multivariate distribution with uniform [0,1] margins 

In financial applications, Cherubini et al 2011 discussed two most common used family of 

copulas: the elliptical and the Archimedean copulas.  Elliptical copulas are symmetric which 
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are derived from elliptical distribution by applying Sklar theorem. The commonly used are 

Gaussian and the Student’s –t copulas. Their dependence structure is determined by a standard 

correlation or dispersion matrix because of the invariant property of copulas Archimedean 

copulas capture a wide range of dependence. Example of Archimedean copula are Clayton, 

Frank, and Gumbel. Frank copula is symmetric while Clayton and Gumbel copulas are 

asymmetric. Clayton captures lower tail dependence and Gumbel captures upper tail 

dependence. The general expression of Archimedean copulas for variables 𝑢, 𝑣𝜖[0,1]2 is 

𝐶(𝑢, 𝑣) = 𝜑−1(𝜑(𝑢) + 𝜑(𝑣)) 
where𝜑 is the generator which is strictly decreasing continuous function  

           𝜑−1 is the pseudo inverse. 

3.3.1 Gaussian copula is defined as follows: 

 Let 𝑅 be a symmetric, positive definite matrix with 𝑑𝑖𝑎𝑔(𝑅) = 1 and let 𝛷𝑅the standardized 

multivariate normal distribution with correlation matrix 𝑅. Then the multivariate Gaussian 

copula is defined as 

𝐶𝐺𝑎𝑢𝑠𝑠(𝑢1, 𝑢2, … 𝑢𝑁; 𝑅) = 𝑐(𝛷
−1(𝑢1),𝛷

−1(𝑢2),……𝛷
−1(𝑢𝑁) 

where 𝛷𝑅
−1 is the inverse standard univariate normal distribution function𝛷𝑅. 

 

The associated multinomial copula density is  

 

𝐶𝐺𝑎𝑢𝑠𝑠(𝛷(𝑥1), 𝛷(𝑥2),… . . , 𝛷(𝑥𝑁); 𝑅) =
𝑓𝐺𝑎𝑢𝑠𝑠(𝑥1, 𝑥2, … . , 𝑥𝑁)

∏ 𝑓𝑛
𝐺𝑎𝑢𝑠𝑠𝑁

𝑛=1 (𝑥𝑛)
 

 

                                                                                         =

1

2𝜋
𝑁
2 |𝑅|

1
2

exp(−
1

2
𝑥′𝑅−1𝑥)

∏
1

√2𝜋
𝑁
𝑛 exp(−

1

2
𝑥𝑛
2)

, 

fixing 𝑢𝑛 = 𝛷(𝑥𝑛), and denote 

Ϛ = (𝛷−1(𝑢1),𝛷
−1(𝑢2),… . , 𝛷

−1(𝑢𝑁)
′) 

the vector of the Gaussian univariate distribution function is 

𝑐(𝑢1, 𝑢2, … 𝑢𝑁; 𝑅) =
1

|𝑅|
1
2

exp (−
1

2
Ϛ′(𝑅−1 − 1)Ϛ]. 

 

3.3.2 The BB7 copula is defined as 

Let 𝐾 be the bivariate Gumbel copula and let 𝜓 be the gamma 𝐿𝑇:𝜓𝜃 = (1 + 𝑆)−
1
𝜃⁄  then 

𝐶(𝑢1, 𝑢2) = (1 + [(𝑢1
−𝜃 − 1)

𝛿
+ 𝑢2

−𝜃−1)]
−1

𝜃 )  

With lower tail dependence (𝜆𝐿) = 2
−1

(𝛿𝜃)⁄
 , uper tail dependence (𝜆𝑈) =2 − 2

1
𝛿⁄   

 

3.3.3 The student t copula is defined as 

Let 𝑅 be a symmetric, positive definite matrix with 𝑑𝑖𝑎𝑔(𝑅) = 1 and let 𝑇𝑅,𝑣 the 

standardized multivariate student t distribution and the correlation matrix 𝑅 and 𝑣 degree of 

freedom. Then the multivarite1 student t copula is defined as follows 

𝑐(𝑢1, 𝑢2, … 𝑢𝑁; 𝑅, 𝑣) = 𝑇𝑅,𝑣(𝑡𝑣
−1(𝑢1), (𝑡𝑣

−1(𝑢2), … . , (𝑡𝑣
−1(𝑢𝑁)), 

where 𝑡𝑣
−1(𝑢𝑛) is the inverse of the student t cumulative distribution function.  
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The associate Student t copula density is 

 

                             𝑐(𝑢1, 𝑢2, … 𝑢𝑁; 𝑅, 𝑣) =
𝑓𝑠𝑡𝑢𝑑𝑒𝑛𝑡(𝑥1,𝑥2,…,𝑥𝑁)

∏ 𝑓𝑛
𝑠𝑡𝑢𝑑𝑒𝑛𝑡𝑥𝑛

𝑁
𝑛=1

   

 

= ǀ𝑅ǀ−
1
2
ᴦ(
𝑣 + 𝑁
2 )

ᴦ(
𝑣
2)

[
ᴦ(
𝑣
2)

ᴦ(
𝑣 + 1
2 )

]𝑁
(1 +

(Ϛ′𝑅−1Ϛ)
𝑣 )𝑟−

𝑣+𝑁
2

∏ (1 +
Ϛ𝑛2

𝑣 )
−
𝑣+1
2𝑁

𝑛=1

, 

where Ϛ = (𝑡𝑣
−1(𝑢1), 𝑡𝑣

−1(𝑢2), … , 𝑡𝑣
−1(𝑢𝑁))

′. 

 

3.4 Estimation of Value at Risk Using Copula  

Copula to estimate VaR of a portfolio consists of several assets including 𝐴𝑅(1) −
𝐺𝐴𝑅𝐶𝐻(1,1) + Gaussian copula and 𝐴𝑅(1) − 𝐺𝐴𝑅𝐶𝐻(1,1) + student t copula. In these 

models, each return series is assumed to follow 𝐴𝑅(1) − 𝐺𝐴𝑅𝐶𝐻(1,1) models and innovations 

are simultaneously generated using copulas. It is also involving estimation of multivariate 

model.  There are two steps of estimating multivariate models using copula. 

(1) There is a two-step procedure for the identification and estimation of the joint CDF 

 (a) identification and estimation of the marginals. 

(b) identification and estimation of the copula function. 

This is also referred to as inference for margins (Dias,2004). The first step of the IFM (inference 

for margin) method requires choosing a family of distributions to model each univariate return 

time series, independently of any copula mode.The marginal distributions and the copula need 

not belong to the same family of distributions because Sklar’s theorem has enabled a lot of 

flexibility in multivariate modelling (2) one-stage maximum likelihood estimates are obtained  

by maximing sum of copula likelihood functions for all observation in one step by plugging all 

the required parameters into the copula. 

 

3.4.1 Modelling the marginal distributions  

ARMA-GARCH  models has been successfully modelled returns series. AR(1)-GARCH(1, 

1) model are used to model the margins as follows  

                                             𝑥𝑛,𝑡 = 𝜇𝑛 + ∅𝑛𝑥𝑛,𝑡−1 + 𝜖𝑛,𝑡; 
                                               𝜖𝑛,𝑡 = 𝜎𝑛,𝑡𝜂𝑛,𝑡; 

𝜎𝑛,𝑡
2 = 𝛼𝑛 + 𝛽𝑛𝜖𝑛,𝑡−1

2 + 𝛾𝑛𝜎𝑛,𝑡−1
2 ; 

where { 𝜂𝑛,𝑡} is white noise process,𝛼𝑛 ,𝛽𝑛, 𝛾n satisfy the condition of GARCH model: 

𝛽𝑛 + 𝛾n < 1 for n = 1, 2,...,N and t = 1, 2,...,T. The conditional distribution of the 

standardized innovations  

𝜂𝑛,𝑡 =
𝜖𝑛,𝑡
𝜎𝑛,𝑡

|ℑ𝑛,𝑇,𝑛 = 1,2, … ,𝑁, 

    

was modelled by white noises and denoted by 𝐹𝑛,𝑡in general case (the marginal distributions). 

Considering the case that𝜂𝑛,𝑡 are standard normal distributions and student t distributions with 

the same degree of freedom,𝑛 = 1,2, . . , 𝑁. 

   The joint distribution of innovation vector 𝜂𝑡 = 𝜂1,𝑡, 𝜂2,𝑡, … , 𝜂𝑁,𝑡 is model by copula.  
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 Let 𝜂𝑛,𝑡 = 𝐹𝑛,𝑡(𝜂𝑛,𝑡|ℑ), 𝐹1,𝑡, 𝐹2,𝑡, … . 𝑎𝑛𝑑𝐹𝑁,𝑡are marginal distributions conditioned 

toℑ, the information available up to time T-1. If the models were correctly specified then series 

{𝑢𝑛,𝑡|𝑡 = 1,2, … . , 𝑇 − 1}will be standard uniform series.  

 

3.4.2 Modelling the copula  

Assuming that ( 𝜂1,𝑇 , 𝜂2,𝑇 , … , 𝜂𝑁,𝑇) has multivariate distribution function   

  𝐻𝑇(𝜂1,𝑇 , 𝜂2,𝑇 , … , 𝜂𝑁,𝑇; 𝜃1,𝑇 , 𝜃2,𝑇|ℑ) 
are continuous univariate marginal distribution functions 𝐹𝑛,𝑇(𝜂𝑛,𝑇; 𝜃𝑛,𝑇|ℑ) 
where ℑ =𝜂𝑛,𝑡|𝑛 = 1,2, … . . 𝑁, 𝑡 = 1,2, … , 𝑇 − 1}. 
Since the marginal distributions are continuous, the conditional copula 𝐶𝑇is uniquely defined 

according to Sklar theory, having  

𝐶𝑇(𝐹1,𝑇(𝜂1,𝑇; 𝜃1,𝑇|ℑ),𝐹2,𝑇(𝜂2,𝑇; 𝜃2,𝑇|ℑ,.....,𝐹𝑁,𝑇(𝜂𝑁,𝑇; 𝜃𝑁,𝑇|ℑ); 𝜃2,𝑇|ℑ) 
   =𝐻𝑇(𝜂1,𝑇, 𝜂2,𝑇 , … , 𝜂𝑁,𝑇; 𝜃1,𝑇 , 𝜃2,𝑇|ℑ) 
Where 𝜃1,𝑇 is the margins’ parameters and 𝜃2,𝑇 is the copula’s function𝐶𝑇 
The parameters𝜃1,𝑇 , 𝜃2,𝑇 are estimated by using IFM ( inference for the margins) method as 

follows 

1. Estimation of the margin’s parameters 𝜃1,�̂� by performing the estimation of the univariate 

marginal distribution. 

𝜃1,�̂� = 𝑎𝑟𝑔𝑚𝑎𝑥∑∑𝑙𝑛𝑓𝑛,𝑇(ɳ𝑛,𝑡; 𝜃1,𝑇).

𝑁

𝑛=1

𝑇−1

𝑡=1

 

2. Estimation of the copula parameters 𝜃2,�̂� given𝜃1,�̂� 

𝜃2,�̂� = 𝑎𝑟𝑔𝑚𝑎𝑥∑ 𝑙𝑛𝐶𝑇(𝐹1,𝑇(ɳ1,𝑡; 𝜃1,𝑇), 𝐹2,𝑇(ɳ2,𝑡; 𝜃1,𝑇), … . . , 𝐹𝑛,𝑇(ɳ𝑛,𝑡; 𝜃1,𝑇); 𝜃2,𝑇).

𝑇−1

𝑡=1

 

If the marginal distribution 𝐹𝑛,𝑇 are standard normal distributions, then 𝐶𝑇is a multivariate 

Gaussian copula with correlation matrix 𝜃2,𝑇 = 𝑅𝑇 . In this case, 𝑁 marginal distributions are 

assumed to have the same degree of freedom. 

        

3.5      COPULA-BASED DEPENDENCE MEASURE 

Copula-based measure of dependence, as defined by McNeil, et al. (2005), is coefficient of tail 

dependence which measures the strength of dependence in the tails.  

One of the most commonly used coefficient of rank correlation is Kendall’s τ. It relies on the 

notion of concordance. A pair of random variables is concordant whenever large values of one 

variable are associated with large values of the other variable. More formally, if(𝑦𝑖, 𝑥𝑖) and 

(𝑦𝑗 , 𝑥𝑗) are two observations of random variables (𝑌, 𝑋). Then, the pairs are concordant 

whenever (𝑦𝑖 − 𝑦𝑗)(𝑥𝑖 − 𝑥𝑗) > and discordant whenever(𝑦𝑖 − 𝑦𝑗)(𝑥𝑖 − 𝑥𝑗) < 0  . 

Kendall’s 𝜏 is defined as the difference between the probability of concordance and the 

probability of discordance. Kendall’s 𝜏 is a copula-based dependence measure in the sense that 

it does not depend on the marginal distribution, but is exclusively a function of the copula:( 

note i.e. the copula can be used to measure the 𝜏) based on (Nelsen, 2006) 

                                                    𝜏 =
𝑐−𝑑

𝑐+𝑑
     

𝜏𝑢1,𝑢2 = 4∫⨜[0,1]2 𝐶(𝑢1, 𝑢2)𝑑𝐶(𝑢1, 𝑢2) − 1 
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where 𝑐(𝑑) are the number of concordant (discordant) pairs, 𝐶 is the copula,𝑢1 and 𝑢2 are 

the values of the CDFs.  The second advantage of using a copula is that one can measure tail 

dependence , which measures the probability that two variables are in the lower or upper joint 

tails. The coefficient of tail dependencies, in this case, a measure of the tendency of markets 

to crash or boom together. The coefficients of lower and upper tail dependence (𝜆𝐿𝑎𝑛𝑑𝜆𝑈) 

can be expressed in terms of the copula between 𝑋and 𝑌.Based on (Nelsen,2006). 

Kendall’s τ measures overall dependence, there exist copula-based measures of dependence 

that focus on dependence between extremes.  

Quantile dependence focuses on the tails of the distribution. If X and Y are random variables 

with distribution functions FX and FY , there is quantile dependence in the lower tail at 

threshold u, whenever P[Y ≤ F−1Y (u)|X ≤ F−1X (u)] is different from zero. 

Finally, tail dependence is obtained as the limit of the probability. 

The coefficient of lower tail dependence of X and Y is  

 

                     𝜆𝐿 =  lim
𝑢→0+

𝑃[𝑌 ≤ 𝐹𝑌
−1 (𝑢)|𝑋 ≤ 𝐹𝑋

−1(𝑢)] = lim
𝑢→0+

𝐶(𝑢,𝑢)

𝑢
 

𝜆𝑈 =  lim
𝑢→1−

𝑃[𝑌 ≤ 𝐹𝑌
−1 (𝑢)|𝑋 ≤ 𝐹𝑋

−1(𝑢)] = lim
𝑢→1−

1 − 2𝑢 + 𝐶(𝑢, 𝑢)

1 − 𝑢
 

           

where 𝐹𝑌
−1and 𝐹𝑋

−1are the marginal quantile functions and where 𝜆𝐿 and 𝜆𝑈𝜖[0,1]Roughly 

speaking, 𝜆𝐿(𝜆𝑈)measures the probability that 𝑌is below (above) a low (high) quantile, given 

that 𝑋is below (above) a low (high) quantile. If 𝜆𝐿𝑜𝑟𝜆𝑈is positive, then there is lower or 

upper tail dependence, otherwise there is lower or upper tail independence. Again, there is a 

symmetric tail dependence between two assets when𝜆𝐿 = 𝜆𝑈, otherwise it is asymmetric. 

Different copulas usually represent different dependence structures with the association 

parameters indicating the strength of dependence. 

 

3.5.1   The Gumbel copula (1960) is used to model asymmetric dependence in the data. This 

copula is famous for its ability to capture strong upper tail dependence and the weak lower tail 

dependence. If outcomes are expected to be strongly correlated at high values but less 

correlated at low values then the Gumbel copula is an appropriate choice. The bivariate Gumbel 

is given by: 

𝐶𝐺𝑢(𝑢1, 𝑢2, 𝜃) = exp[−((−𝑙𝑜𝑔𝑢1)
𝜃 + (−𝑙𝑜𝑔𝑢2)

𝜃)
1
𝜃] 

Where 𝜃 is the copula parameter restricted on the interval [1,∞]. When 𝜃 approaches 1, the 

marginal become independent and when 𝜃 goes to infinity the Gunbel copula approaches the 

Fretchet-Hoeffding upper bound. Like the Clayton copula, the Gumbel copula represents only 

the case of independence and positive dependence. 

The relation between the Gumbel copula parameters and the Kendall’s tau is given by: 

 

𝜏𝑘 = 1 − 𝜃−1 

The parameter of the upper and lower tail dependence of the Gumbel copula can be calculated 

respectively by 𝜆𝑢 = 2 − 2
1

𝜃 , which is the upper tail dependency, and 𝜆𝐿 = 0, It has no lower 

tail dependency. If 𝜃 = 1,implies the independent copula and if 𝜃 → ∞, implies the minimum 

copula. Gumbel copula can be applied when dependency increases with extreme positive 

values especially during credit portfolio risk and when dependency increases during times of 

recession and credit losses. 
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3.5.2 Clayton Copula  

 The Clayton Copula was  first introduced by Clayton (1978). The Clayton copula is mostly 

used to study correlated risks because of their ability to capture lower fail dependence. The 

closed form of the bivariate Clayton copula is given by: 

𝐶𝑐𝑙(𝑢1, 𝑢2; 𝜃) = (𝑢1
−𝜃 + 𝑢2

−𝜃 − 1)−
1
𝜃 

Where 𝜃 is the copula parameter restricted on the interval (0,∞) . If 𝜃=0 then marginal 

distributions become independent and when 𝜃 goes to infinity the Clayton copula approximate 

the Fretchet-Hoeffding upper bound .Due to the restriction on the dependence parameter, the 

Fretchet-Hoeffding upper bound cannot be reached by the Clayton copula. This suggests that 

the Clayton copula cannot account for negative dependence. The dependence between the 

Clayton copula parameter and Kendall’s tau rank measure is simply given by 

𝜏𝑘 =
𝜃

𝜃+2
               

The parameter of lower tail dependence for this copula can be calculated by: 𝜆𝐿 = 2
−
1

𝜃  

(Cherubini, Lucino and Vecchiatar, 2004). Clayton copula has lower tail dependency but has 

no upper tail dependency. 

 

3.5.3  Frank Copula   

Frank Copula (1979) is given by  𝑐𝐹𝑟(𝑢1,𝑢2,𝜃) = 𝜃−1log[1 +
(𝑒−𝜃𝑢1−1)(𝑒−𝜃𝑢2−1)

(𝑒−𝜃−1)
] 

Where 𝜃 is the copula parameter that may take any real value i.e𝜃 ∈ ℝ\{0} . Unlike the 

Clayton and the Gumbel copula, the Frank copula allows the maximum range of dependence. 

This means that the dependence parameter of the Frank copula permits the approximation of 

the upper and the lower Fretchet-Hoeffding bounds and thus the Frank copula permits modeling 

positive as negative dependence in the data. The relation between the Frank copula parameters 

and the Kendall’s tau is given by. 

 

𝜏𝑘 = 1 − (
4

𝜃
) + 4(

𝐷1(𝜃)

𝜃
) 

The dependence from Frank’s copula relies on the 𝐷𝑒𝑏𝑦𝑒𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 defined as 

𝐷1(𝜃) =
1

𝜃
∫

𝑡

exp(𝑡) − 1
𝑑𝑡

𝜃

𝑜

𝑓𝑜𝑟𝜃 > 0. 

To evaluate the negative arguments of the 𝐷𝑒𝑏𝑦𝑒𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝐷1, the basic calculus shows that. 

𝐷1(−𝜃) = 𝐷1(𝜃) +
𝜃

2
 

 

When 𝜃approaches +∞ and -∞ the Fretchet-Hoeffding upper and lower bound will be attained. 

The independence case will be attained when θ approaches zero. However, the Frank copula 

has neither lower nor upper tail dependence (𝜆𝑈 = 𝜆𝐿 = 0 ). The Frank copula is thus suitable 

for modelling data characterized by weak tail dependence. 

 

3.6 MIXTURE COPULA 

Gaussian copula has zero tail dependence while Clayton copula has left tail dependence and no 

right tail dependence. On the contrary, Gumbel copula has right tail dependence and no left tail 
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dependence. Each of the copulas has both advantages and disadvantages. The Archimedean 

copulas are restricted to show either dependence of negative or positive joint. 

events. It may be that the more dimensions the data set has, the more unlikely it is that all 

variables share the same dependence: a prerequisite for a good fit of copulas with just one 

dependence parameter. The elliptical copula model meanwhile model’s dependence through 

a greater number of parameters but is limited to symmetric dependence. To combine the 

advantageous features of both a new class of copulas has been introduced. These are known 

as‘mixture copulas’. The mixture allows the use of two or more copulas to describe the 

dependence structure of a data set. Clearly, the mixing of different copulas can generate a wide 

range of dependence structures.  A bivariate mixture copula may be written 

as𝐶𝑚𝑖𝑥(𝑢1, 𝑢2, … . , 𝑢𝑁; 𝜃1, 𝜃2, 𝑚1, 𝑚2) 
= 𝑚1. 𝐶

𝑚𝑖𝑥1(𝑢1, 𝑢2, … . , 𝑢𝑁; 𝜃1) + 𝑚2. 𝐶
𝑚𝑖𝑥2(𝑢1, 𝑢2, … . , 𝑢𝑁; 𝜃2) 

 
where 𝑚2 = 1 −𝑚1,𝐶𝑚𝑖𝑥 represent the mixture copula,𝐶𝑚𝑖𝑥1 is the first copula in the 

mixture copula and 𝐶𝑚𝑖𝑥2 is the second copula in the mixture copula. The two-step MLE 

procedure can be use estimate the mixture copula which is also known as the method of 

Inference Function for Margins(IFM). 

3.7  Estimation and Inference 

Sklar’s theorem opens the way for two alternative estimation methods for copulas based on the 

likelihood. The estimation of the ARMA-GARCH process and the copula are separated 

regardless of the copula model which has resulted in two great advantages. Firstly, the marginal 

models are estimated once regardless of the copula function, this has reduce the number of 

parameters to be estimated in each step. Secondly, the residuals that set for basis for any copula 

estimation are filtered by the same marginal models. All copulas are calibrated on the same 

data, which allows a direct comparison of the copulas and the copulas are not biased based by 

differences in the marginals. The concept of conditional copula was introduced by Patton 

(2006b) which allowing for time-variation in the parameters of the marginal distributions. It is 

particularly useful for returns, since volatility models imply that marginal distributions have 

time-varying means and volatilities. The conditional copula is 

 

𝐹𝑡 = (𝑦1𝑡, … . , 𝑦𝑛𝑡|𝒀
𝑡−1) = 𝐶𝑡(𝐹1𝑡(𝑦1𝑡|𝒀

𝑡−1), … . , 𝐹𝑛𝑡(𝑦𝑛𝑡|𝒀
𝑡−1)|𝒀𝑡−1) 

where 𝑌𝑠 = (𝑦1𝑠, … , 𝑦𝑛𝑠)  denotes the time 𝑠 observations of all series and 𝒀𝑡−1 = [𝑌𝑠]𝑠=1
𝑡−1 is 

the history of the multivariate process up to time t − 1. The density is obtained by differentiating 

and taking logs of the conditional copula  leading to the joint likelihood of the marginal and 

the copula, the total log-likelihood (LL) depends on all the data (𝒀𝑡×𝑑) and is written as  

𝐿𝐿(𝒀: 𝜃𝑚, 𝜃𝑐) =∑log 𝑓(𝒀𝑡|𝒀
𝑡−1; 𝜃𝑚, 𝜃𝑐)

𝑇

𝑡=1

 

 Where 𝜃𝑚 denotes the parameters of the marginals, 𝜃𝑐 the copula parameters and  

𝒀𝑡−1 = (𝒀1, … , 𝒀𝑡) represents the history of the full process. Consequently, l can decompose 

the log- likelihood into one part for the marginals (𝐿𝐿𝑚) and one part for the copula (𝐿𝐿𝑐) : 
 

                                  𝐿𝐿(𝒀; 𝜃𝑚, 𝜃𝑐) = 𝐿𝐿𝑚(𝒀; 𝜃𝑚) + 𝐿𝐿𝑐(𝒀; 𝜃𝑚, 𝜃𝑐) 

𝐿𝐿𝑚(𝒀; 𝜃𝑚) = ∑∑𝑙𝑜𝑔𝑓𝑖(𝑥𝑖,𝑡|𝑥𝑖
𝑡−1; 𝜃𝑚,𝑖)

𝑛

𝑖=1

𝑇

𝑡=1
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𝐿𝐿𝑐(𝒀; 𝜃𝑚, 𝜃𝑐) =∑𝑙𝑜𝑔𝑐(𝐹1(𝑦1,𝑡|𝑦1
𝑡−1; 𝜃𝑚,1), … , 𝐹𝑛(𝑦𝑛,𝑡|𝑥𝑛

𝑡−1; 𝜃𝑚,𝑛); 𝜃𝑐)

𝑇

𝑡=1

 

if each variable𝑖only depend on its own history, 𝑥𝑖
𝑡−1 = (𝑥𝑖,1, … , 𝑥𝑖,𝑡). The likelihood of the 

marginal models (𝐿𝐿𝑚) is a function of the parameter vector  𝜃𝑚 = (𝜃𝑚,1, … , 𝜃𝑚,𝑛), that 

collects the parameters of each one of the 𝑛 marginal densities𝑓𝑖, but the copula likelihood 

directly depends on the copula parameter𝜃𝑐 and indirectly on the parameters of the marginal 

densities, through the distribution function 𝐹𝑖because 𝐹𝑖 transforms the observations into 

uniform [0,1] variables that are the inputs for the copula.  The two step estimation procedure 

is also known as the method of inference Functions for Margins (IFM) as discussed in 

(Joe&Xu,1996). Fortunately, Newey and McFadden (1994) showed that one and two-step 

estimations are similarly efficient. Assume that the marginals depend only on their own history, 

but are independent from each other. Therefore, the margins can be estimated: 

𝜃𝑚 = 𝑎𝑟𝑔𝑚𝑎𝑥𝜃𝑚 ∑∑ log 𝑓𝑖(𝑦𝑖,𝑡|𝑦𝑖
𝑡−1; 𝜃𝑚,𝑖)

𝑛

𝑛=1

𝑇

𝑡=1

 

Because the marginal models are independent of each other (i.e. when the univariate ARMA-

GARCH model are used), it is simplified further into a set of separate estimations for each one 

of the magin i, so that estimate of each series can be separated as in 

𝜃𝑚,𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥𝜃𝑚,𝑖∑𝑙𝑜𝑔𝑓𝑖(𝑦𝑖,𝑡|𝑦𝑖
𝑡−1, 𝜃𝑚,1)

𝑇

𝑡=1

 

 and collect the coefficients in a vector: 𝜃𝑚 = (𝜃𝑚,1, … . , 𝜃𝑚,𝑛) and in a second step, the 

parameters of the copula are estimated taking as given the parameter estimates of the marginal 

models: 

                                        𝜃𝑐 = 𝑎𝑟𝑔𝑚𝑎𝑥𝜃𝐿𝐿𝑐(𝑌; 𝜃𝑚, 𝜃𝑐) 
To calculate the copula standard errors, the IFM estimator (𝜃𝐼𝐹𝑀) collects all the parameters 

of the marginal and copula methods as a vector, 𝜃𝐼𝐹𝑀 = (𝜃𝑚,1, … , 𝜃𝑚,𝑛, 𝜃𝑐). Durrleman et al.  

(2000) propose an approach to calculate the copula standard errors based on the Godambe 

information ratio. They show that the IFM estimator verifies the property of asymptotics 

normality as shown below 

                              √𝑇(𝜃𝐼𝐹𝑀 − 𝜃0) → 𝑁(0, 𝐺−1(𝜃0)) 

With 𝐺(𝜃0) the information matrix of Godambe. They further define a score 

function,𝑠𝑐(𝜃) = (𝜕𝜃𝑚,1𝐿𝐿𝑀,1, … , 𝜕𝜃𝑚,𝑛𝐿𝐿𝑚,𝑑, 𝜕𝜃𝑐𝐿𝐿𝑐). The Godambe information matrix 

takes the form (Joe 1997), 

                              𝐺(𝜃0) = 𝐷−1𝑉(𝐷−1)′ 

where 𝐷 = 𝐸[
𝜕𝑠𝑐(𝜃)′

𝜕𝜃
]  and  𝑉 = 𝐸[𝑠𝑐(𝜃)′𝑠𝑐(𝜃)] . Joe and Xu (1996) suggest the jackknife 

resampling method ( the most commonly used method) for estimation of the variance and 

efficient estimation, because the estimation of the covariance matrix requires one to calculate 

many derivatives. 

3.8   Value at risk 

The maximum likelihood estimates MLEs (�̂�,�̂�, 𝜀̂) for a GPD, threshold 𝑢 and 𝑁𝑢 the number 

of exceedances is used to quantify the value at risk, for tail probability P, and total sample 

size 𝑛. VaR is given by 
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                                     𝑉�̂�𝑅𝑝(𝑦𝑡)= {
𝑢 +

�̂�

�̂�
[1 − {−𝑛𝑙𝑖𝑚(1 − 𝑝)−�̂�}]𝑖𝑓𝜀̂ ≠ 0

𝑢 − 𝜎̂ ln(−𝑛𝑙𝑛(1 − 𝑝)) 𝑖𝑓𝜀̂ = 𝑂
 

 

 for a GEVD with maximum likelihood estimates (�̂�,�̂�, 𝜀̂), 
 

𝑉�̂�𝑅𝑝(𝑦𝑡) =

{
 

 𝑢 +
�̂�

𝜀̂
{(
𝑛

𝑁𝑢
𝑝)−�̂� − 1} 𝑖𝑓𝜀̂ ≠ 0

𝑢 + �̂�ln(
𝑛

𝑁𝑢
(1 − 𝑝)𝑖𝑓𝜀̂ = 𝑜

 

The VaR of the asset is computed finally using the following formula: 

𝑉𝑎𝑅𝑝(𝑟𝑡) = 𝜎𝑘𝑡 + 𝜎𝑘𝑡 . 𝑉𝑎𝑅𝑝(𝑦𝑡) 

where 𝑉𝑎𝑅𝑝(𝑟𝑡) is the p percentile of the standardised residuals. The return 𝜎𝑘𝑡 is estimated 

from the volatility model. The riskiness of the asset is expressed through 𝑉𝑎𝑅𝑝(𝑦𝑡) 

3.9   Monte Carlon simulation 

Using Gaussian and student t copula to simulate 𝑘 vector 

    ɳ𝑇,𝑘 = (ɳ1,𝑇,𝑘, ɳ2,𝑇𝑘, … . , ɳ𝑁,𝑇.𝑘), 

for 𝑘 = 1,2, … , 𝐾 

The Monte Carlon simulation process for multivariate Gaussian copula is as follow: 

1. Find the Cholesky decomposition 𝐴 of the linear correlation matrix 𝑅. 

2. Simulate 𝑁 i.i.d. 𝑧 = (𝑧1, 𝑧2, … , 𝑧𝑁)
′ from𝑁(0,1) 

3. Simulate a random variate 𝑠 from 𝜒𝑣
2 independent of 𝑧 

4. Setɳ𝑇,𝑘
′ = 𝐴𝑧 

The Monte Carlon simulation for multivariate student t copula  

1. Find the Cholesky decomposition 𝐴 of the linear correlation matrix 𝑅 

2. Simulate 𝑁 i.i.d. 𝑧 = (𝑧1, 𝑧2, … , 𝑧𝑁)
′ from𝑁(0,1) 

3. Simulate a random variate 𝑠 from 𝜒𝑣
2 independent of 𝑧 

4. Set𝑦 = 𝐴𝑧 

5. Set ɳ𝑇,𝑘
′ =√(

𝑣

𝑠
) 𝑦 

Simulating 𝐾 vectors (𝑥1,𝑇,𝑘, 𝑥2,𝑇,𝑘, … . , 𝑥𝑁,𝑇,𝐾) and 𝐾 values of 𝑥𝑇,𝑘 by using the model 

below: 𝑥𝑛,𝑡 = 𝜇𝑛 + ∅𝑛𝑥𝑛,𝑡−1 + 𝜖𝑛,𝑡; 
𝜖𝑛,𝑡 = 𝜎𝑛,𝑡𝜂𝑛,𝑡; 

𝜎𝑛,𝑡
2 = 𝛼𝑛 + 𝛽𝑛𝜖𝑛,𝑡−1

2 + 𝛾𝑛𝜎𝑛,𝑡−1
2 , 

for 𝑘 = 1,2, … , 𝐾. Ordering series {𝑥𝑇,𝑘} in increasing order. The VaR of portfolio by 𝑉𝑎𝑅𝑇 

(𝛼) = 𝑥𝑇,𝐾𝑝 . 

 

4.0   RESULT AND DISCUSSION 

Table 4.1: Comparison of copula models 

Pairs             Parameter    Gaussian        Frank       Gumbel       Clayton          BB7        t copula 

Dan-GTCO     𝜃              0.28                  1.53            1.2               0.35 

                        L-L          21.98                16.37         24.48           20.63          28.39          27.26 

                        AIC         -41.87              -30.73        -46.97          -39.26         -52.79       -50.51     

                        BIC         -37.55              -26.42        -42.66          -34.95         -44.16       -41.89     
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Dan-Nestle      𝜃              0.26                 1.48            1.2               0.32 

                        L-L         18.91                14.29          22.92           16.79          29.81         29.81 

                        AIC        -35.81              -26.59          -43.85         -3.59          -55.62        -55.62     

                        BIC         -31.5               -22.27          -39.53         -27.28        -47.00        -47.00         

Dan-Vit           𝜃              0.15                 0.99              1.12            0.23 

                        L-L          6.13                 6.84              8.9              8.87            11.3          8.82 

                        AIC        -10.26              -11.69           -15.79         -15.75        -18.6         -13.63    

                        BIC         -5.95              -7.38             -11.48         -11.44          -9.97         -5.01         

Dan-Fid        𝜃             0.2                  1.09              1.13             0.23 

                  L-L         11.2                8.52              11.11           9.22            12.88        11.73 

                  AIC        -20.24             -15.05          -20.22          -16.44         -12.88       11.73     

                  BIC         -15.93            -10.74            -15.91         -12.13         -13.14       10.83    

GTCO-Nes   𝜃            0.23                1.21              1.14             0.22 

                    L-L        13.72              10.06             13.56            9.17            19.94       18.2 

                    AIC      -25.43              -18.12           -25.11         -16.35          -35.87      32.4     

                    BIC      -21.12             -13.81             -20.8           -12.04         -27.25      23.78     

GTCO-VIT    𝜃            0.09                0.6                  1.05             0.1               0.6 

                   L-L         2.14              2.73                1.62             2.09             2.70         2.41 

                  AIC         -2.28              -3.46              -1.23           -2.18            -3.46         0.81     

                  BIC         2.03               0.85               3.08             2.13              0.85        7.81  

GTCO-FID  𝜃             0.15               0.76                1.09             0.17              1.09 

                  L-L        6.02               4.32                6.23            5.59               6.23            

                AIC        -10.05             -6.65             -10.45          -9.18             -10.45      5.71 

                BIC        -5.73               -2.34              -6.14            -4.87             -6.14       1.2 

NEST-VIT 𝜃         0.1                   0.64             1.08               0.13                 1.08 

                  L-L      2.67                  2.77            4.13                3.3                  4.13        5.11  

               AIC     -3.33               -3.54            -6.25              -4.59               -6.25        6.21                

                 BIC      0.98                0.77            -1.94              -0.28               -1.94        2.41                                                             

NEST-FID 𝜃          0.09                 0.73            1.09                0.17               1.09       

                  L-L      5.47                  3.71           6.56                6.29               6.56        7.04 

                 AIC    -8.93               -5.43            -11.12            -10.57             -11.12    10.09                

                 BIC     -4.62               -1.12           -6.81               -6.26              -6.56       1.47                                           

VITA-FID 𝜃           0.2                  1.14            1.13                0.22    

                 L-L      10.61              8.98             10.21              8.44               12.18      12.18 

                AIC      -19.22             -15.97         -18.43             -14.87           -20.36      20.36                                                                                                                                           

                BIC     -14.91             -11.65        -14.12             -10.56          -11.74      -11.74     

 

Note: The bold values in the table refer to the LL,AIC and BIC for the best fitted copula 

model. The AIC criterion and binary segmentation procedure (BIC) are used to find the 

copula that best fits the data set and determine the change points of the copula family and 

copula parameters. 

Table 4.2:  Tail Dependence Coefficient of Best Copula BB7 Model 

Pair                        Lower tail dependence (𝜆𝐿)     Upper tail dependence (𝜆𝑈)      Kendall’s tau 

DAN-Gtco                              0.06                                          0.20                                0.18 

DAN-Nestle                           0.15                                           0.15                               0.16 

DAN-Vitaform                      0.00                                           0.00                                0.12 
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DAN-Fidson                          0.02                                           0.13                                0.13 

GTCO-Nestle                         0.11                                          0.06                                0.15  

GTCO-Vitaform                    0.00                                           0.00                                0.07 

GTCO-Fidson                        0.11                                           0.00                                0.09 

NEST-Vitaform                     0.10                                           0.00                                0.07 

NEST-Fdson                          0.00                                           0.11                                0.08 

VITA-FID                              0.02                                           0.02                               0.12 

 

The estimated values are reported in table 2. In the financial data context upper tail dependence 

means dependence in boom market, while lower tail dependence means dependence in bear 

market. It is observed that dependences in boom market are different than the dependences in 

bear market. Since upper tail dependence parameters are higher than lower tail dependence 

parameter for some pairs like DAN-Gtco ,DAN-Fidson  ,NEST-FID, which are more likely to 

rise together than to fall together. It is noted the pair is the strongest tail dependent pair for both 

positive and negative co-exceedances. The NEST-Vitaform and GTCO-Fidson, pairs show  the 

smallest degree of upper tail dependence, while DAN-Vitaform, GTCO-Vitaform and NEST-

Fidson pairs report the smallest degree of lower tail dependence. To interpret the tail 

dependence results, taking the upper tail and the lower tail dependence parameters𝜆𝑈 and 𝜆𝐿for 

DAN-Gtco pair. For this pair,𝜆𝑈 is estimated to be 0.20 meaning that given DAN having a 

price jump above a certain value, the probability of Naira having a price jump above a 

corresponding value is about 20%.The lower tail dependence parameter𝜆𝐿 for the pair is 

estimated to be 0.06, meaning that given DAN having a price drop below a corresponding value 

is about 6%. The dependence structure exhibits the asymmetric dependence between two 

variables. The degree of asymmetry in the dependence in the upper and lower tail reported in 

Table 2 shows that two variable exhibit greater correlation during market upturns than market 

downturn.  

 

Table 4.3: Parameter estimates for GPD model. 

Statistics                              𝜇                                      𝜑                                     ξ 

DANCEM                            0.4326                            0.1513                           -0.2035   

GTCO                                  0.5573                             0.2539                           -0.2258               

NESTLE                              0.5570                             0.2398                           -0.5764   

VITAFOAM                        1.4884                             0.9891                           -1.008                                                 

FIDSON                               10082                              0.5670                           -0.2842                                                                                                         

 

The standardised residuals of the selected best fit model were extracted and used to fit 

Generalised Pareto Distributions and Generalised Extreme Value Distributions before being 

used in the estimation of the VaR. From Table 3, it is observed that the shape parameter ξ 
values for all the variables are significantly negative which have short tailedness for left tail. It 

is also observed that vitafoam has insignificant short tailedness. Figure 2 shows the qq plots of 

the lower and upper tail exceedances against the quantiles obtained from the GPD fit. The 

approximate linearity of the plots indicates the GPD model seems tobe a good choice. 

 

 

 

 

http://www.iiardjournals.org/


 

 

International Journal of Computer Science and Mathematical Theory (IJCSMT) E-ISSN 2545-5699 P-ISSN 

2695-1924 Vol 10. No.1 2024 www.iiardjournals.org (Online Version) 

 
 

 
 

 IIARD – International Institute of Academic Research and Development 
 

Page 119 

Table 4.4: Value-at-risk estimates 

Statistics                              Confidence Interval                                      Copula family 

                                                                                             Archimedean            Elliptical 

                                                                                           Gumbel                      Student t                        

DANCEM                               95%                            0.970850                          0.9741139                                             

GTCO                                     95%                            1.2053858                         1.1965139  

NESTLE                                 95%                            0.9864471                         0.9887426                                               

VITAFOAM                           95%                            1.2356083                        1.2382889                                                 

FIDSON                                 95%                          0.6711793                      0.4552257 

 

VaR estimate based on the selected ARCHIMEDIAN and ELLIPTICAL copulas for the 

constructed Portfolio. The VaR estimates presented in Table 4 clearly show that during global 

financial crisis, the risk of collapse in some selected stock in Nigeria was extremely high.                                              

 

Figure 1 
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     Figure 2          
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  Figure 3    
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 Conclusion  

In this paper, we examined dependence structure and Portfolio Value-At-Risk for some 

selected Nigerian stocks using a Copula-Based Volatility Model. We performed a range of 

goodness-of-fit tests to help us select the best copula as a measure of dependence between 

Nigerian stock markets.  Marginal model for the stock returns and a joint model for the 

dependence for the dependence were specified. EVT model was employed for the marginal 

distribution of each return series, and for the joint model, the family of copula such as Gaussian, 

Frank, Gumbel, Clayton, BB7, Student-t copula was used with difference dependence 

structure, Using LL, AIC, and BIC values, BB7 was found to be the best fitted copula. Copula 

was used to measure Portfolio risk and global minimum risk portfolio is selected based on 

efficient frontiers. In estimating VaR, precise specification and identification of the probability 

of an extreme movement in the value of an individual asset (or portfolio) is essential for risk 

assessment. The evidence has direct implications for investors and risk managers during 

extreme currency market movements. 

REFERENCES 

Ang, A. and Chen, J. (2002) Asymmetric Correlations of Equity Portfolios. Journal of 

Financial Economics 63(3), 443-494. 

Avdulaj, K., & Barunik, J. (2015). Are benefits from oil–stocks diversification gone? New 

evidence from a dynamic copula and high frequency data. 

 Embrechts, P., A. McNeil, A. and Straumann, D. (2002) Correlation and Dependence 

Properties in Risk Management: Properties and Pitfalls, in M. Dempster, ed., Risk 

Management: Value at Risk and Beyond, Cambridge University Press.  

Embrechts, P., Lindskog, F. and McNeil, A. (2003) Modelling Dependence with Copulas and 

Applications to Risk Management In: Handbook of Heavy Tailed Distributions in 

Finance, ed. S. Rachev, Elsevier. 

Fama, F., E. (1965) The Behavior of Stock-Market Prices. The Journal of Business 38, 1 , 34- 

105. 

Fisher, R. A., & Tippett, L. H. (1928). Limiting forms of the frequency distribution of the 

Fisher, R. A., & Tippett, L. H. (1928). Limiting forms of the frequency distribution of the 

Frey, R., McNeil, A. J., & Nyfeler,  M. (2001).  Copulas and credit models. Journal of Risk, 1 

0. 

Genest, C., Gendron, M ., Bourdeau-Brien,M,(2009) The advert of copula in finance. European 

.Journal  Finance .15(7|8), 609-618 (2009) 

Hamerle, A. and R ̈osch, D. (2005). Mis specified copulas in credit risk models: How good is 

Gaussian. Journal of Risk, 8(1). 

Han, Y., Li, P., Li, J., & Wu, S. (2019). Robust Portfolio Selection Based on Copula Change 

Analysis. Emerging Markets Finance and Trade, 56(15), 3635–3645. 

doi:10.1080/1540496x.2019.1567262 

Holton, G. A., (2003). Value-at-risk: Theory and practice. Academic Press, New York. 2. 

http://www.iiardjournals.org/


 

 

International Journal of Computer Science and Mathematical Theory (IJCSMT) E-ISSN 2545-5699 P-ISSN 

2695-1924 Vol 10. No.1 2024 www.iiardjournals.org (Online Version) 

 
 

 
 

 IIARD – International Institute of Academic Research and Development 
 

Page 123 

Jäschke S (2014) Estimating of risk measures in energy portfolios using modern copula 

techniques. Computational Statistics & Data analysis,  

Jondeau, E. and Rockinger, M. (2003) Conditional Volatility, Skewness, and Kurtosis: 

Existence, Persistence, and Comovements. Journal of Economic Dynamics and 

Control, 27, 1699-1737.  

Longin, F. and Solnik, B. (2001) Extreme Correlation of International Equity Markets. The 

Journal of Finance, 56, 2, 649-676.  

Malz, A. M., (2011) Financial risk management: Models, history, and institutions. 538. John 

Wiley & Sons, Hoboken, New Jersey. 

Mandelbrot, B. (1963) The Variation of Certain Speculative Prices. The Journal of Business 

36, 4, 394-419. 

McNeil, A., Frey, R. and Embrechts, P. (2005) Quantitative Risk Management. Princeton 

University Press, Princeton, NJ.  

Nelsen, R.B. (2006) An Introduction to Copulas, 2nd Edition. Springer, U.S.A. 

Patton, A. J. (2006) Copula-based models for financial time series. In T.G. Andersen, R.A. 

Davis, J.-P. Kreiss and T. Mikosch (eds), Handbook of Financial Time Series. Springer-

Verlag, Berlin 

Perignon, C., Smith, D. R., 2010. The level and quality of value-at-risk disclosure by 

commercial banks. Journal of Banking and Finance,34 (2), 362{377. 

Poon, S.H., Rockinger, M. and Tawn, J. (2004) Extreme-Value Dependence in Financial 

Markets: Diagnostics, Models and Financial Implications. Review of Financial Studies 

17, 2, 581-610. 

Sklar, A. (1959) Fonctions de répartition à n dimensions et leurs marges, Publications de l’ 

Institut Statistique de l’Universite´ de Paris, 8, 229-231. 

Sklar, M., (1959) Fonctions de repartition an dimensions et leurs marges. Publications de 

l'Institut de Statistique de L'Universit de Paris 8, 229-231. 

Thabani, N & Delson, C(2024) Estimating Extreme Value at Risk Using Bayesian Markov 

Regime Switching GARCH-EVT Family 

 

http://www.iiardjournals.org/

